

NeuroTEST - How do image acquisition shifts affect SOTA MS lesion segmentation models?

Ise Image A Second S

Posselt Christiane, Yigitsoy Mehmet¹, Parida Abhijeet, Avci Mehmet Yigit, Stürzer Christina, Patrick Schünke, Christoph Kolbitsch, Tobias Schäffter, Remmele Stefanie 1 deepc GmbH, 2 Physikalisch Technische Bundesanstalt, Berlin

Purpose

This work investigates how the performance metric of an AI model for segmentation of multiple sclerosis (MS) lesions in T2-weighted FLAIR MR images changes in dependence of imaging scan parameters.

Introduction

- Several machine learning products have passed the approval process, e.g. to support radiologists with the diagnosis of med. images [1] MRI protocols are hardly standardized (see fig. 1), training images can differ a lot from images in application
- Al models cannot be tested against all possible image representations due to the lack of real data
- However, acquisition shifts can be described by the MR physics.
- Idea: simulation of possible image representations delivered by range of MR protocols \rightarrow test data sets (Test case: T2w-FLAIR brain scans)
- model performance can be measured as a function of changing sequence parameters \rightarrow prediction of AI performance in dependence of protocol

Figure 1. Problem: in MRI acquisition shifts and protocols not standards

Results

	Reference measu	Table 1. Comparison of the meof simulation and reference Me				
		TE		TE/ms	TI/ms	WM
	84 ms	112ms	140 ms	150	2900	18% ±6%
				150	2200	$19\% \pm 6\%$
				112	2500	0% ±0%
			(20 3 A)	84	2900	13% $\pm 6\%$
	00 ms			84 Table 2. I and real)	2200 Exemplar	12% ±6% Ty relaxation
	58				times / m	s T1 wm
				optimized on TE=112 ms,		
			Cal de la	TI=2500 ms	5	1006
		Reference measurements 1000				
	T 2200m 2500m 2500m			Figure 5. th	25 20 15 10 5 √7 7 %11 5 0 10 5 7 %11 5 8 4 9 6 9 8 4	ative error in %
	Figure 4. MRI simulations an contrasted here with selecte	nd their real comparison i d acquisition parameters	mages are . (left fake, right real)	between the and GM of	e simulat several d	ed images a atashifts of s

Stresstest model dependency

Table 3. Coefficient of determination of the model fit (2nd order polynomial) to the measured dice scores.

	nnUNET	SegResNet	UNETR	VNet	
Coefficient of determination R ²	0.985	0.983	0.980	0.982	
nnUNET	Seg	ResNet		VNET	UNET
TE_140		TE_140		TE_140	

ean signals of WM, GM, CSF and skull IRI with relative error in %

Skull CSF GM 7% ±3% 75% ±30% 13% ±4% 9% ±7% 36% ±9% 25% ±2% 0% ±0% 0% ±0% 0% ±0% 8% ±6% 22% ±13% 21% ±2% 8% ±5% 58% ±10% 12% ±1%

parameters from a patient (optimised

T2 wm T1 gm T2 gm T1 csf T2 csf 4380 759 1773 135

1562 117 3991 895 101 of simulated images WM and GM

20 -		Ť			
15 -	0			T	
10 -	T	Ļ			
5 - 6	2 7	+ 2%	:0%	± 5%	≠ 3%
0-110%		13%	₹%0	20%	16%

Dixelwise relative error in percent and the reference measurements in WM simulated images

- GM's simulation is the most successful with the smallest error (see Table 1, Figure 4)
- CSF shows particularly high relative errors in the simulation (see Table 1, Figure 4) due to low signal in the baseline scan ("Fluid attenuated"!)
- It remains unclear whether average signal deviation (Fig. 1) reflect simulation errors or incorrect relaxation time estimation (Table 2).
- Pixelwise errors are also influenced by imperfect PV estimation (see Figure 5).
- The simulation method is also applicable to other sequences using the appropriate signal equations.
- A great advantage to GANs etc: arbitrary acquisition domains can be simulated not only the one of a particular target training domain.

Limitations:

- Simulation of only white matter, gray matter and CSF. The skull is stored in the texture map and is thus added back to the image -> expansion of the PV analysis needed
- method requires an additional T1w scan and the sequence parameters of the baseline T2 Flair scan -> T1w scans are recommended by all quality guidelines for neuroimaging
- exact validation not possible due to the lack of an accurate relaxometry reference (see Table 2) -> however, exact estimation not crucial for final simulation

Stresstest

- All SOTA models show dependence on acquisition shifts.
- Similar behavior observed among the models regarding range shifts (Figure 6)
- Higher contrast (higher TE and TI) results in better scores
- Previous work demonstrated relevant performance drops with shifts of TE and TI in training data
- Improvements made in the simulation, including the use of PV maps for tissue transitions and relaxation parameters based on original images
- Table 1 shows that all four SOTA models can be described with at least 98% of the fitted 2nd degree polynomial function of regression analysis
- The model appears suitable for predicting performance in changing scan situations
- Manufacturers could use this solution to recommend MRI image acquisition parameters

Literature

[1] McCrindle, B., et al., Radiology: Artificial Intelligence 3(6), [4] ... e210031, 2021 [5] ... [2] P. Berlit, Hrsg., Klinische Neurologie: Mit 363 Tabellen, Berlin and [6] ... Heidelberg: Springer, 2011 [3] ACR, List of FDA cleared AI medical products, https://aicentral.acrdsi.org/, abgerufen am 24.02.2022

Nutzen Sie die Gelegenheit und probieren Sie doch mal Citavi oder Zotero aus! Achten Sie bei Webquellen auf das Datum. Benutzen Sie für Journal, Buch, Link die **Zitierstile**:

- NurErstautorname, V., et al, *Journal*, Volume(Heft),
- Seiten/e-Nr., Jahr.)
- NurErstautorname, V., et al, Buchtitel, Verlag, Jahr
- NurErstautor oder Hrsg, ggfs. Titel, URL, abgerufen am
- WICHTIG: Die Verwendung von OpenSource Tools und Datensätzen erfordert normalerweise die Zitation einer bestimmten Quelle, die Sie auf der jeweiligen Webseite finden!!!!!!

Acknowlegement

This project was funded by the Federal Ministry of Economy and Technology (Project ZIM) KK5050201LB0) and takes place in cooperation with the company deepc GmbH¹, the PTB Berlin and the LAKUMED hospital in Landshut.

to customers or to predict a performance drop/increase in a new image domain

Future work

- Uncertainty analysis: In order to take the AI model's point of view when analyzing images.
- Stresstest training domain dependency.

Oktober 2023 – Praxisforum Digitalisierung – Prof. Dr. Stefanie Remmele – Hochschule Landshut