Modulhandbuch

Bachelor-Studiengang Automobilinformatik (B.Sc.)

Hochschule Landshut
gültig ab dem Sommersemester 2020

für Studierende mit
Studienbeginn ab Wintersemester 2019/20

beschlossen am 21. Januar 2020
Inhaltsverzeichnis

Beispielhafter Studienverlauf ... 3
AIF110 Grundlagen der Informatik ... 4
AIF111 Programmieren I ... 5
AIF112 Digitaltechnik .. 6
AIF211 Programmieren II .. 7
AIF212 Software Engineering .. 8
AIF311 Datenbanken ... 9
AIF312 Modellbasierte Entwicklung I 10
AIF370 IT Sicherheit ... 12
AIF390 Praxisorientiertes Studienprojekt 13
AIF410 Echtzeitbetriebssysteme .. 14
AIF411 Algorithmen und Datenstrukturen 16
AIF412 Datenkommunikation .. 17
AIF413 Modellbasierte Entwicklung II 18
AIF590 Praktische Zeit im Betrieb ... 19
AIF591 Praxisseminar .. 20
AIF612 Softwarearchitekturen .. 21
AIF620 Entwicklung sicherheitskritischer Systeme 22
AIF630 Autonome Fahrzeuge .. 24
AIF670 Fachbezogenes Wahlpflichtmodul 26
AIF710 Prozessrechentechnik .. 27
AIF720 Seminar ... 29
AIF790 Bachelor-Arbeit .. 30
Module aus dem Bachelor-Studiengang Automobilwirtschaft und -technik ... 31

A. Auszug aus dem Modulhandbuch des Studiengangs „Automobilwirtschaft und -technik“ 32
AIF120 Ingenieurmathematik I .. 33
AIF140 Grundlagen der Elektrotechnik 35
AIF150 Technische Mechanik .. 37
AIF220 Ingenieurmathematik II ... 39
AIF240 Elektronik und Messtechnik ... 41
AIF241 Angewandte Physik .. 43
AIF340 Regelungstechnik .. 45
AIF350 Konstruktion und Entwicklung 47
AIF450 Grundlagen der Automobiltechnik 49
AIF620 Fahrwerktechnik .. 51
AIF651 Antriebskonzepte .. 53
AIF750 Karosserietechnik ... 54
Beispielhafter Studienverlauf

Folgende Abbildung zeigt einen beispielhaften Studienverlauf. Für nähere Informationen zum Studienverlauf wird auf den aktuellen Studienverlaufsplan (siehe separates Dokument) verwiesen.
Grundlagen der Informatik

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Sascha Hauke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Prof. Dr. Sascha Hauke</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im ersten Studiensemester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | 60 Stunden Präsenzzeit im Unterricht
 | 90 Stunden Selbststudium |
| Lehrformen: | 4 SWS seminaristischer Unterricht und Übungen |

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:

- Informationssysteme
- Kodierung
- Informelle Algorithmen
- Textersetzung
- Struktogramme
- Funktionale Programmiersprachen
- Prozedurale Programmiersprachen
- Statische Datentypen
- Dynamische Datentypen
- Referenzen
- Objektorientierung
- Komplexität und Berechenbarkeit

Literatur:

Programmieren I

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Markus Mock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Prof. Dr. Markus Mock</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im ersten Studiensemester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>7</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | 60 Stunden Präsenzzeit im Unterricht
 | 30 Stunden Präsenzzeit Praktikum
 | 120 Stunden Selbststudium |
| Lehrformen: | 4 SWS seminaristischer Unterricht
 | 2 SWS Praktikum |
| Leistungsnachweise und Prüfung: | Leistungsnachweis im Praktikum, schriftl. Prüfung von 90 Minuten am Semesterende. |

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:

- Elementare Datentypen
- Grundlegende Konzepte der prozeduralen Programmierung
- Grundlegende Konzepte der funktionalen Programmierung
- Präprozessoranweisungen
- Ein- und Ausgabe in C und C++
- Datenstrukturen
- Zeiger, Vektoren und Felder
- Grundlegende Konzepte der objektorientierten Programmierung
- Vererbung, Mehrfachvererbung
- Operatorüberladung
- Dynamische Konzepte

Literatur:
Jürgen Wolf: C von A bis Z: Das umfassende Handbuch, Galileo Computing, aktuellste Ausgabe
Jürgen Wolf: C++: Das umfassende Handbuch, aktuell zum Standard C++11, Galileo Computing, aktuellste Auflage
Digitaltechnik

Modulverantwortlicher: Prof. Dr. Martin Pellkofer

Dozent: Prof. Dr. Jürgen Welter

Studiengang: Bachelor

Modultyp: Pflichtfach

Sprache: Deutsch

Angebot: im ersten Studiensemester

Dauer: ein Semester

Vorkenntnisse: -

Voraussetzungen: -

Leistungspunkte: 3

Arbeitsaufwand: 30 Stunden Präsenzzeit im Unterricht
60 Stunden Selbststudium

Lehrformen: 2 SWS seminaristischer Unterricht und Übungen

Leistungsnachweise und Prüfung: schriftl. Prüfung 60 Minuten am Semesterende

Qualifikationsziele und Inhalte:

Qualifikationsziele:
Die Studierenden kennen wichtige Schaltnetze und Schaltwerke, die als Grundbausteine in Mikroprozessoren verwendet werden. Sie haben die Fähigkeit einfache Schaltwerke zu entwerfen.

Lehrinhalte:

- Schaltalgebra und Schaltsymbole
- Schaltnetze (Kombinatorische Logik):
- Codeumsetzer, Decoder, Demultiplexer, Multiplexer
- Arithmetische Schaltnetze:
- Addierer, Subtrahierer, Arithmetisch-logische Einheit (ALU), Multiplizierer
- Flip-Flops:
- Ungetaktete (asynchrone) Flip-Flops, Getaktete (synchrone) Flip-Flops
- Schaltwerke (Sequentielle Logik):
- Zähler, Register, Schieberegister
- Busse
- Halbleiterspeicher
- Grundstruktur eines Mikroprozessors

Literatur:
Fricke, Digitaltechnik, Vieweg, 2005
Programmiere II

Modulverantwortlicher:
Prof. Dr. Christopher Auer

Dozent:
Prof. Dr. Christopher Auer

Studiengang:
Bachelor

Modultyp:
Pflichtfach

Sprache:
Deutsch

Angebot:
im zweiten Studiensemester

Dauer:
ein Semester

Vorkenntnisse:
Programmieren I (C/C++)

Voraussetzungen:
-

Leistungspunkte:
7

Arbeitsaufwand:
60 Stunden Präsenzzeit im Unterricht
30 Stunden Präsenzzeit Praktikum
120 Stunden Selbststudium

Lehrformen:
4 SWS seminaristischer Unterricht
2 SWS Praktikum (jeweils 14-tägig 4 Stunden)

Leistungsnachweise und Prüfung:
Leistungsnachweis im Praktikum, schriftliche Prüfung von 90 Min.

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:
- Java Laufzeitsystem, Garbage Collection
- Java Typsystem
- Grundlegende Konzepte der objektorientierten Programmierung, Vererbung und Beziehungen zwischen Typen
- Daten kapselung, Immutability, Konzepte von Gleichheit und Identität
- Entwicklung von Lösungen für konkrete Problemstellungen und Umsetzung der Lösungsideen in lauffähige Software unter Einhaltung professioneller Maßstäbe und Kriterien
- Einsatz von Klassenbibliotheken und Umgang mit Fehlern
- Ein- und Ausgabe
- Definition und Nutzung von Container-Datenstrukturen
- Grafische Benutzeroberflächen

Literatur:
Michael Inden, Der Weg zum Java-Profi, dpunkt.Verlag 2015
Dan Pilone, Russ Miles: Head First Software Development. O'Reilly 2008
Reinhard Schiedermeier, Klaus Köhler: Das Java Praktikum, d-punkt-Verlag 2008
Software Engineering
Modulhandbuch: Bachelor-Studiengang Automobilinformatik (B.Sc.)

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Abdelmajid Khelil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Dr. Stefan Winter, Tobias Piller</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im vierten Studiensemester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | 30 Stunden Präsenzzeit im Unterricht
 | 30 Stunden Präsenzzeit in den Übungen
 | 90 Stunden Selbststudium |
| Lehrformen: | 2 SWS seminaristischer Unterricht
 | 2 SWS Übungen |
| Leistungsnachweise und Prüfung: | schriftl. Prüfung 90 Minuten am Semesterende. |

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:
Motivation und Definition der Begriffe Softwaretechnik, Software Engineering, Softwarequalität usw., Planung (Projektplanung, Aufwandsschätzung, Machbarkeitsstudie, Lastenheft), Anforderungsanalyse (Modellierung, Pflichtenheft), Entwurf (Datenmodellierung, Zustandsmodellierung, Testmetriken, Testautomatisierung, Entity-Relationship Diagramme), Entscheidungstabellen, Softwarearchitektur, Programmier-richtlinien, elementare Grundlagen der analytischen Qualitätssicherung.

Literatur:
Grady Booch et al.: Das UML-Benutzerhandbuch, Addison-Wesley, 1999
Datenbanken

AlF311

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Wolfgang Jürgensen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Prof. Dr. Wolfgang Jürgensen</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im dritten Studiensemester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>Erster Studienabschnitt oder vergleichbare Kenntnisse, Grundkenntnisse in C und Java.</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Zulassung zum Praktikum erfolgt bei bestandener Prüfung in Programmieren I oder Programmieren II</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>30 Stunden Präsenzzeit im Unterricht 30 Stunden Präsenzzeit Praktikum 90 Stunden Selbststudium</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td>2 SWS seminaristischer Unterricht 2 SWS Praktikum in kleinen Gruppen (14tägig 4 Stunden)</td>
</tr>
<tr>
<td>Leistungsnachweise und Prüfung:</td>
<td>Schriftliche Prüfung 90 Minuten am Semesterende.</td>
</tr>
</tbody>
</table>

Qualifikationsziele und Inhalte:

Qualifikationsziele:
Die Studierenden besitzen theoretische und praktische Kenntnisse über relationale, objektrelationale und NoSQL-Datenbanken.

Lehrinhalte:
- Aufbau und Funktionen eines Datenbanksystems
- Datenbankentwurf: Entity-Relationship-Modell, Normalisierung
- Relationales Datenbank-Modell
- Anfragesprachen: relationale Algebra, Structured Query Language (SQL)
- Indexstrukturen in relationalen Datenbanken
- Transaktionen, Trigger, Query-Optimierung
- eingebettetes SQL, Java Database Connectivity (JDBC)
- NoSQL-Datenbanken (MongoDB)

Literatur:
R. Elmasri, S. B. Navathe: Grundlagen von Datenbanksystemen, Addison-Wesley
Modellbasierte Entwicklung I

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Martin Pellkofer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Prof. Dr. Martin Pellkofer</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im dritten Studiensemester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>Programmieren I</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Zulassung zum Praktikum erfolgt bei bestandener Modulprüfung in Programmieren I oder Programmieren II</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>7</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | 60 Stunden Präsenzzeit im Unterricht
 | 30 Stunden Präsenzzeit im Praktikum
 | 120 Stunden Selbststudium |
| Lehrformen: | 4 SWS seminaristischer Unterricht
 | 2 SWS Praktikum in kleinen Gruppen (14tägig 4 Stunden) |
| Leistungsnachweise und Prüfung: | schriftliche Prüfung von 90 Minuten am Semesterende |

Qualifikationsziele und Inhalte:

Qualifikationsziele:
Die Studierenden verstehen die Methode der modellbasierten Softwareentwicklung und die Unterschiede zur traditionellen Vorgehensweise. Sie sind in der Lage, mit Hilfe der Werkzeuggeste Matlab/Simulink/Stateflow modellbasiert komplexe Fahrzeugfunktionen zu entwickeln und die Funktionen in Festkommaarithmetik zu formulieren. Sie können die Modelle der Fahrzeugfunktionen auf verschiedenen generischen Plattformen in Echtzeit ablaufen lassen und über die I/O-Kanäle mit einem äußeren technischen Prozess verbinden. Die Studenten sind in der Lage, aus den Modellen der Fahrzeugfunktionen Quelltext für die Sprache C zu generieren. Sie können dabei den Generierungsprozess so anpassen, dass der Quelltext sich in eine vorgegebene Software-Umgebung auf einem eingebetteten System einfügt.

Lehrinhalte:

- traditioneller und modellbasierter Entwicklungsprozess
- Anforderungen an Modelle und Modellierungstechniken
- Modellierungssprachen und ihre Eigenschaften
- Matlab™: Datentypen, Matrix- und Feldoperationen, Prozeduren und Funktionen, numerisches Lösen von Differentialgleichungen;
- Simulink™: Modellierung dynamischer Systeme durch hierarchische Blockschaltbilder, Stapelverarbeitung von Simulationen mit Variation der Parameter, Erstellen eigener Blockbibliotheken und S-Funktionen, Einbinden von handgeschriebinem Quellcode in das Modell;
- Stateflow™: Ereignisdiskrete Modellierung mit hierarchischen Zustandsautomaten
- Automatische Code-Generierung mit Matlab-, Simulink- und Embedded-Coder™
- Reversibles Umschalten zwischen Gleitkommaarithmetik und Festkommaarithmetik
- Rapid Prototyping mit verschiedenen Plattformen
Literatur:
A. Angermann, M. Beuschel, M. Rau, W. Wohlfarth: Matlab-Simulink-Stateflow, Oldenbourg, 6. Auflage, München 2009
User Manuals der Matlab-Toolboxen Matlab Coder™, Simulink Coder™, Embedded Coder™, Fix-Point Designer™ von The Mathworks
IT Sicherheit

Modulverantwortlicher: Prof. Dr. Johann Uhrmann
Dozent: Prof. Dr. Johann Uhrmann
Studiengang: Bachelor
Modultyp: Pflichtfach
Sprache: Deutsch
Angebot: im dritten Studiensemester
Dauer: ein Semester
Vorkenntnisse: Programmieren I
Voraussetzungen: -
Leistungspunkte: 5
Arbeitsaufwand: 30 Stunden Präsenzzeit im Unterricht
30 Stunden Präsenzzeit in der Übung
60 Stunden Selbststudium
Lehrformen: 2 SWS seminaristischer Unterricht
2 SWS Übung in kleinen Gruppen (14tägig)
Leistungsnachweise und Prüfung: schriftliche Prüfung 90 Minuten am Semesterende

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:
Analyse von Sicherheitsbedrohungen.
Sicherheitsbasisdienste: Kryptographie, Key Management, Authentifizierung.
Sicherheitsarchitekturen und Protokolle: pgp, S/MIME, TLS. Firewalls.
Aktuelle Entwicklungen in der IT-Sicherheit

Literatur:
Bruce Schneier, Angewandte Kryptographie, Addison Wesley, 1996.
Weitere Literatur wird in der Veranstaltung bekanntgegeben.
Praxisorientiertes Studienprojekt AIF390

Modulverantwortlicher: Prof. Dr. Martin Pellkofer
Dozent: Dozenten der Fakultät Informatik
Studiengang: Bachelor
Modultyp: Pflichtfach
Sprache: Deutsch
Angebot: Im sechsten Studiensemester
Dauer: ein Semester
Vorkenntnisse: Programmieren I, Software Engineering I, Grundlagen der Informatik
Voraussetzungen: Zulassung erfolgt bei bestandener Prüfung in Programmieren I oder Programmieren II
Leistungspunkte: 5
Arbeitsaufwand: 60 Stunden nicht ständig betreute Projektarbeit im Labor
90 Stunden eigenverantwortliches Arbeiten am Projekt
Lehrformen: 4 SWS nicht ständig betreute Projektarbeit im Labor
Eigenverantwortliches Arbeiten der Studierenden in Teams von einer kritischen Größe, so dass das Auftreten typischer Schnittstellenprobleme gewährleistet ist.
Leistungsnachweise und Prüfung: Benoteter Leistungsnachweis durch individuelle schriftliche Ausarbeitung jedes Teammitglieds zum eigenen Beitrag im Projekt, im Team erstellte Gesamtdokumentation.

Qualifikationsziele und Inhalte:
Qualifikationsziele:

Lehrinhalte:

Literatur:
Siehe Projektbeschreibungen.
Echtzeitbetriebssysteme

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Martin Pellkofer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Prof. Dr. Martin Pellkofer</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im vierten Studiensemester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>Programmieren I/II, Modellbasierte Entwicklung I, Datenkommunikation</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Zulassung zum Praktikum erfolgt bei bestandener Modulprüfung in Programmieren I oder Programmieren II</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>30 Stunden Präsenzzeit im Unterricht</td>
</tr>
<tr>
<td></td>
<td>30 Stunden Präsenzzeit im Praktikum</td>
</tr>
<tr>
<td></td>
<td>90 Stunden Selbststudium</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td>2 SWS seminaristischer Unterricht</td>
</tr>
<tr>
<td></td>
<td>2 SWS Praktikum in kleinen Gruppen (14tägig 4 Stunden)</td>
</tr>
<tr>
<td></td>
<td>In diesem Modul findet zusätzlich eine Blockveranstaltung “Wissenschaftliches Arbeiten” statt.</td>
</tr>
<tr>
<td>Leistungsnachweise und Prüfung:</td>
<td>schriftliche Prüfung von 90 Minuten am Semesterende</td>
</tr>
</tbody>
</table>

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:
- Eigenschaften und Komponenten von Echtzeitbetriebssystemen
- Echtzeitanforderungen
- Unterbrechungsbehandlung
- Scheduling-Verfahren
- Synchronisation und Interprozesskommunikation
- plattformunabhängiges Programmieren mit der BOOST C++ Library
- OSEK-Standard: Task-Konzept, Konformitätsklassen, Prioritäten-Levels, Event, Counter, Alarm, Message, Hook-Funktionen, Konfiguration, OIL, Design Patterns, API
- Erstellen von Anwendungen mit Microsar OS auf einer eingebetteten Hardware
- Methoden zum Verfassen einer wissenschaftlichen Arbeit bzgl. Inhalt, Stil und Form
Literatur:

M. Homann: OSEK: Betriebssystem-Standard für Automotive und Embedded Systems, mitp-Verlag, 1. Auflage, Bonn, 2005

M. Kornmeier: Wissenschaftlich schreiben leicht gemacht, utp Verlag, 8. Auflage; 2018
Algorithmen und Datenstrukturen

Algorithmen und Datenstrukturen

Modulverantwortlicher: Prof. Andreas Siebert, Ph.D.

Dozent: Prof. Andreas Siebert, Ph.D.

Studiengang: Bachelor

Modultyp: Pflichtfach

Sprache: Deutsch

Angebot: im vierten Studiensemester

Dauer: ein Semester

Vorkenntnisse: Programmierkenntnisse in Java oder C/C++

Voraussetzungen: -

Leistungspunkte: 5

Arbeitsaufwand:
- 30 Stunden Präsenzzeit im Unterricht
- 30 Stunden Präsenzzeit im Praktikum
- 90 Stunden Selbststudium

Lehrformen:
- 2 SWS seminaristischer Unterricht
- 2 SWS Praktikum in kleinen Gruppen (14tägig 4 Stunden)

Leistungsnachweise und Prüfung:
- Schriftliche Prüfung 90 Minuten am Ende des Semesters.

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:
- Komplexität von Algorithmen; Master-Theorem
- Sortier- und Suchalgorithmien
- Paradigmen der Algorithmenentwicklung
- Hashing, Dynamische Mengen
- Datenkompression
- Ausgewählte Algorithmen

Literatur:
Datenkommunikation (AI412)

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Dieter Nazareth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Prof. Dr. Dieter Nazareth</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im dritten Studiensemester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>Programmieren I/II, Modellbasierte Entwicklung I, Software Engineering I, Grundlagen der Informatik</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Zulassung zum Praktikum erfolgt bei bestandener Modulprüfung in Programmieren I oder Programmieren II</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>30 Stunden Präsenzzeit im Unterricht</td>
</tr>
<tr>
<td></td>
<td>30 Stunden Präsenzzeit im Praktikum</td>
</tr>
<tr>
<td></td>
<td>90 Stunden Selbststudium</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td>2 SWS seminaristischer Unterricht</td>
</tr>
<tr>
<td></td>
<td>2 SWS Praktikum in kleinen Gruppen (14tägig 4 Stunden)</td>
</tr>
<tr>
<td>Leistungsnachweise und Prüfung:</td>
<td>schriftliche Prüfung von 90 Minuten am Semesterende</td>
</tr>
</tbody>
</table>

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:
- funktions-, domänen- und modulorientierte Bordnetzarchitekturen
- elektrotechnische Grundlagen und Bustopologien
- Adressierung von Botschaften und Buszugriffsverfahren
- Physical und Data Link Layer von K-Line, CAN, LIN, FlexRay, MOST, Automotive Ethernet
- Protokolle des Transport Layer: ISO-TP, TP 2.0, Flexray TP, UDP, TCP, DoIP
- Protokolle des Application Layer: KWP 2000, UDS, OBD, Some/IP, TSN
- Protokolle für Messen, Kalibrieren und Diagnose: ASAM, CCP, XCP, AML (A2L), FIBEX
- Entwicklungsprozess mit CANoe: Netzwerkdesign und Simulation, Restbussimulation, Integration und Test des Netzwerks

Literatur:
- Ch. Marscholik, P. Subke: Datenkommunikation im Automobil, Hüthig Verlag, Heidelberg, 2007
- A. Grzemba, J. von der Wense: LIN-Bus, Franzis Verlag, 1. Auflage, 2005

Lehrinhalte:
- Erstellen einer Anforderungsspezifikation
- Objektorientierte Modellierung mit Klassen, hierarchischen Zustandsautomaten und ESDL
- Datenfluss- und Kontrollflussdiagramme
- Definition eines Projekts für verschiedene Plattformen
- Aufbau einer Experimentierumgebung
- Durchführung von Offline-Simulationen
- Einführung in das Betriebssystems OSEK
- Verwendung von Kennlinien und Kennfeldern
- Implementierung der Daten mit Festkommaarithmetik

Literatur:
- User Manuals und Online Hilfe von ASCET Developer (Fa. ETAS)
Praktische Zeit im Betrieb

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Martin Pellkofer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>-</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im fünften Studiensemester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>-</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Erfolgreiches Bestehen aller Prüfungen der ersten beiden Studiensemester</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>22 (bei Ableistung im Ausland 24)</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>wenigstens 80 Arbeitstage, Montag bis Donnerstag, insgesamt 660 Stunden Präsenzzeit im Betrieb bei Auslandspraktikum: wenigstens 94 Arbeitstage, Montag bis Freitag, insgesamt 810 Stunden Präsenzzeit</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td>Tätigkeit in der Wirtschaft</td>
</tr>
<tr>
<td>Leistungsnachweise und Prüfung:</td>
<td>Praktikumsbericht (Benoitung: mit/ohne Erfolg)</td>
</tr>
</tbody>
</table>

Qualifikationsziele und Inhalte:

Qualifikationsziele:
Die Studierenden haben vertiefte Kenntnisse über technische und organisatorische Problemlösungen in Betrieben.

Lehrinhalte:
Die Studierenden werden zum selbständigen und eigenverantwortlichen Arbeiten in praxisrelevanten Automobilinformatikprojekten angeleitet. Die Arbeit sollte möglichst in einem typischen Automobilinformatikprojekt erfolgen.

Literatur:
Tätigkeitsspezifisch
Praxisseminar

Modulverantwortlicher: Prof. Dr. Martin Pellkofer

Dozent: Prof. Dr. Johann Uhrmann

Studiengang: Bachelor

Modultyp: Pflichtfach

Sprache: Deutsch

Angebot: im fünften Studiensemester

Dauer: ein Semester

Vorkenntnisse: -

Voraussetzungen: Erfolgreiches Bestehen aller Prüfungen des ersten Studienabschnitts. AIF590 muss parallel zu AIF591 belegt werden oder bereits abgeleistet sein

Leistungspunkte: 3

Arbeitsaufwand: 30 Stunden Präsenzzeit im Unterricht
60 Stunden Selbststudium

Lehrformen: 2 SWS Seminar mit Kurzreferaten und Diskussion

Leistungsnachweise und Prüfung: Teilnahmepflicht, benoteter Vortrag über das Praktikum AIF590

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:
- Erfahrungsaustausch
- Anleitung und Beratung
- Fachliche Diskussion
- Präsentationsstil

Literatur:
Tätigkeitsspezifisch
Softwarearchitekturen

Modulverantwortlicher: Prof. Dr. Dieter Nazareth

Dozent: Andreas Fassel

Studiengang: Bachelor

Modultyp: Pflichtfach

Sprache: Deutsch

Angebot: im vierten Studiensemester

Dauer: ein Semester

Vorkenntnisse: Programmieren I/II, Modellbasierte Entwicklung I/II, Datenkommunikation

Voraussetzungen: Zulassung zum Praktikum erfolgt bei bestandener Prüfung in Programmieren I oder Programmieren II

Leistungspunkte: 5

Arbeitsaufwand: 30 Stunden Präsenzzeit im Unterricht

30 Stunden Präsenzzeit im Praktikum

90 Stunden Selbststudium

Lehrformen: 2 SWS seminaristischer Unterricht

2 SWS Praktikum in kleinen Gruppen (14tägig 4 Stunden)

Leistungsnachweise und Prüfung: mündliche Prüfung von 15 Min. am Semesterende

Qualifikationsziele und Inhalte:

Qualifikationsziele:
Die Studierenden besitzen ein tiefes Know-How über die Strukturierung von Software in einem Steuergerät. Sie kennen speziell die AUTOSAR Softwarearchitektur und die AUTOSAR Methodik zur Entwicklung steuergeräteunabhängiger Software.

Lehrinhalte:

- Begriffsdefinition
- Einführung in Komplexität
- Grundbegriffe der Strukturierung
- Prinzipien der Architekturbildung
- Einführung in AUTOSAR
- Die AUTOSAR Methodik
- Die Systemsicht
- Kommunikationsmechanismen
- Steuergeräte- und Netzwerksicht
- AUTOSAR Basicsoftware
- UML
- SysML
- Grundlagen Anforderungsmanagement

Literatur:

Olaf Kindel, Mario Friedrich: Softwareentwicklung mit AUTOSAR: Grundlagen, Engineering, Management in der Praxis, dpunkt Verlag

Oliver Alt: Modellbasierte Systementwicklung mit SysML, Carl Hanser Verlag
Entwicklung sicherheitskritischer Systeme

Vorlesung 1: Einführung in das Systems Engineering
Vorlesung 2: Funktionale Sicherheit

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Dieter Nazareth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Vorlesung 1: Martina Blust, Vorlesung 2: Dietmar Kinalzyk</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im sechsten Studiensemester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>Programmieren I/II, Modellbasierte Entwicklung I, Datenkommunikation</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Zulassung zum Praktikum erfolgt bei bestandener Modulprüfung in Programmieren I oder Programmieren II</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>7</td>
</tr>
<tr>
<td>Arbeitsaufwand:</td>
<td>Vorlesung 1: 30 Stunden Präsenzzeit im Unterricht, 40 Stunden Selbststudium Vorlesung 2: 60 Stunden Präsenzzeit im Unterricht, 80 Stunden Selbststudium</td>
</tr>
<tr>
<td>Lehrformen:</td>
<td>6 SWS seminaristischer Unterricht mit Übungen und Praktika</td>
</tr>
<tr>
<td>Leistungsnachweise und Prüfung:</td>
<td>1 mündliche Prüfungen von 15 Min. für den Vorlesungsteil 1 „Einführung in das Systems Engineering“ und 1 schriftliche Prüfung von 60 Min. für den Vorlesungsteil 2 „Funktionale Sicherheit“, jeweils am Semesterende, Gesamtnote ergibt sich aus dem nach SWS gewichteten Durchschnitt der Einzelnoten;</td>
</tr>
</tbody>
</table>

Qualifikationsziele und Inhalte:

Qualifikationsziele:
-
-
Lehrinhalte:

von „Einführung in das Systems Engineering“:

- Ziele, Definition und Disziplinen des Systems Engineering
- Generelle Prinzipien des Systems Engineering
- Prinzipien der Strukturierung
- Ausgewählte Themen aus dem Systems Engineering
 - Problemlösungsprozess
 - Zieldefinition
 - Lösungssuche
 - Bewertung
 - Entscheidung
 - Systemmanagement
 - Modellierung des Systemaufbaus
 - Modellierung des System- und Prozessablaufs
- Moderation
 - Visualisierung
 - Handwerkszeug des Systems Engineers
 - Gemeinsames Verständnis für Anforderungen schaffen
 - Rollenverständnis und Stakeholder
- Die Anwendung der erlernten Methoden erfolgt durch Ausarbeitungen von Übungen in Teams.

von „Funktionale Sicherheit“:

- Einführung in die Funktionale Sicherheit, Gefahren, Risiko, Standards und Zielbestimmung
- Sicherheitsziel, sicherer Zustand, Fehlertoleranzzeit
- Zuverlässigkeit, Ausfallrate, Verfügbarkeit
- Fehlermodelle, Fehleranalyse, Minderung der Auswirkung, Metriken
- Hierarchie Ebenen im System und Aufteilung der Fehlerwahrscheinlichkeit
- Funktionales Sicherheitskonzept, Sicherheitsanalysen, Methoden
- Technisches Sicherheitskonzept, Selbstüberwachung, Integrität, Notlauf
- Dekomposition durch Diversität und unabhängige Redundanz
- Ableitung von HW und SW design
- Testmethoden und -verfahren.
- Sicherere Bus- Kommunikation
- Entwicklungsprozesse, Qualität, Audit, Assessment
- Anwendungsbeispiele aus der Praxis

Literatur:

zu „Einführung in das Systems Engineering“:

zu „Funktionale Sicherheit“:
H.-L. Ross: Funktionale Sicherheit im Automobil, Hanser Verlag, 2014
D. Dürholz, S. Herrmann, R. Stärk: Safety Essentials, Kugler Maag Verlag, 2014
Gebhardt V., Rieger G., Mottok J., C. Gießelbach: Funktionale Sicherheit nach ISO 26262, dpunkt Verlag
Autonome Fahrzeuge

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Martin Pellkofer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Prof. Dr. Martin Pellkofer</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im sechsten Studiensemester, erstmalig im Sommersemester 2022</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>Programmieren I/II, Modellbasierte Entwicklung I, Datenkommunikation, Echtzeitbetriebssysteme</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>Zulassung zum Praktikum erfolgt bei bestandener Modulprüfung in Programmieren I oder Programmieren II</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | 30 Stunden Präsenzzeit im Unterricht
30 Stunden Präsenzzeit im Praktikum
90 Stunden Selbststudium |
| Lehrformen: | 2 SWS seminaristischer Unterricht
2 SWS Praktikum in kleinen Gruppen (14tägig 4 Stunden) |
| Leistungsnachweise und Prüfung: | schriftliche Prüfung von 90 Minuten am Semesterende |

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:

- Abgrenzung des Begriffs "Autonomie"
- Stand der Technik bei autonomen Fahrzeugen: Funktion, Leistungsfähigkeit
- Sensorik und Sensordatenverarbeitung mit Monokameras, Stereokamera, Lidar, Radar, Ultraschall, und IntertialSENSoren; insbes.:
 - Bildfolgenverarbeitung zur Spurerkennung und Schätzung von Ablage und Gierwinkel
 - Mustererkennung und Klassifikation zur Erkennung von Verkehrszeichen und Fremdfahrzeugen
 - Schätzung von Position und Geschwindigkeit vom Eigenfahrzeug und von Fremdfahrzeugen aus Bildfolgen mittels rekursiver, erweiterter Kalman-Filter und Inertialsensoren (4D-Ansatz)
 - Sensordatenfusion: Zweck und alternative Algorithmen
- Wissensrepräsentation und Entscheidungsfindung:
 - Szenenbaum, homogene Transformationsmatrizen
 - Missionsplanung und Missionsüberwachung
 - Repräsentation der Fähigkeiten des autonomen Systems
 - Steuerung der ablaufenden Aktionen und Vorhalten von Alternativen
- Aktives Sehen:
 - Der Sehprozess von Wirbeltieren als Vorbild
 - Steuerung der Wahrnehmungsprozesse und der Aufmerksamkeit (*region of interest*)
 - Blickrichtungssteuerung für Zweiachs-Kameraplattformen
- Anwendungen von Methoden aus den Bereichen künstliche Intelligenz und maschinelles Lernen
- Ethische und rechtliche Fragen
- Praktikum:
 - Vehicle-in-the-Loop-Simulation mit CarMaker (Fa. IPG) zur Entwicklung von Wahrnehmungsprozessen
 - Entwicklungsarbeit und Experimente mit autonom fahrenden 1:10-Modellfahrzeugen

Literatur:

E. D. Dickmanns: Dynamic Vision for Perception and Control of Motion, Springer, 2007
T. Tille (Hrsg.): Automobil-Sensorik 2, Springer, 2018
Fachbezogenes Wahlpflichtmodul AIF670

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Martin Pellkofer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Dozenten der Hochschule Landshut</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im sechsten oder siebten Studiensemester. Vor Beginn des sechsten Studiensemesters wird eine Liste der angebotenen Fächer mit ihren Beschreibungen veröffentlicht.</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>Erster Studienabschnitt oder vergleichbare Kenntnisse</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>siehe individuellen Modulbeschreibungen</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>5</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | 60 Stunden Präsenzzeit im Unterricht
| | 90 Stunden Selbststudium |
| Lehrformen: | Modulspezifisch |
| Leistungsnachweise und Prüfung: | Leistungsnachweise und Prüfungen werden in den individuellen Modulbeschreibungen festgelegt. |

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Die Studierenden sind mit ausgewählten, fachbezogenen Wissensgebieten oder erweiterten Fertigkeiten in speziellen Anwendungen, die der individuellen Vorbereitung auf die berufliche Praxis dienen, vertraut.

Lehrinhalte:

Siehe individuelle Fachbeschreibungen

Literatur:

Siehe individuelle Fachbeschreibungen
Prozessrechentechnik

Modulverantwortlicher: Prof. Dr. Martin Pellkofer

Dozent: Prof. Dr. Martin Pellkofer

Studiengang: Bachelor

Modultyp: Pflichtfach

Sprache: Deutsch

Angebot: im siebten Studiensemester

Dauer: ein Semester

Vorkenntnisse: Erster Studienabschnitt oder vergleichbare Kenntnisse

Voraussetzungen: Zulassung zum Praktikum erfolgt bei bestandener Modulprüfung in Programmieren I oder Programmieren II

Leistungspunkte: 5

Arbeitsaufwand: 30 Stunden Präsenzzeit im Unterricht
30 Stunden Präsenzzeit im Praktikum
90 Stunden Selbststudium

Lehrformen: 2 SWS seminaristischer Unterricht
2 SWS Praktikum in kleinen Gruppen (14tägig 4 Stunden)

Leistungsnachweise und Prüfung: schriftliche Prüfung von 90 Minuten am Semesterende

Qualifikationsziele und Inhalte:

Qualifikationsziele:

Lehrinhalte:

• Unterschiede zwischen eingebetteten Systemen und IT-Systemen
• Grundlagen in Systemdynamik und Regelungstechnik
• Realisierung einfacher digitaler Filter und Regler mit Prozessrechner
• gebräuchliche Typen von Sensoren und Aktuatoren
• Analog- und digitale I/O bei Prozessrechnern, Pulswellenumwandlung
• Analog/Digital-Wandlung, Alias-Effekte, Nyquist-Shannon-Abtasttheorem
• Optimierungen bei eingebetteten Softwaresystemen (Laufzeit, Energie- und Speicherverbrauch)
• Programmierung eines Mikrocontrollers (MPC560*B von NXP)
• Entwicklung einer kamerabasierten Querfahrzeuge für ein Modellfahrzeug
• Geräteanbindung über I²C- und SCI-Busse unter Embedded Linux und Raspberry Pi
Literatur:
Handbücher der benutzten Hardware und Software
Seminar

<table>
<thead>
<tr>
<th>Modulverantwortlicher:</th>
<th>Prof. Dr. Dieter Nazareth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dozent:</td>
<td>Dozenten der Fakultät Informatik</td>
</tr>
<tr>
<td>Studiengang:</td>
<td>Bachelor</td>
</tr>
<tr>
<td>Modultyp:</td>
<td>Pflichtfach</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Angebot:</td>
<td>im siebten Studiensemester</td>
</tr>
<tr>
<td>Dauer:</td>
<td>ein Semester</td>
</tr>
<tr>
<td>Vorkenntnisse:</td>
<td>Informatik-Kenntnisse aus den ersten sechs Semestern des Bachelor-Studiums oder vergleichbare Kenntnisse</td>
</tr>
<tr>
<td>Voraussetzungen:</td>
<td>-</td>
</tr>
<tr>
<td>Leistungspunkte:</td>
<td>3</td>
</tr>
</tbody>
</table>
| Arbeitsaufwand: | 30 Stunden Präsenzzeit
60 Stunden Selbststudium |
| Lehrformen: | Fachliche Präsentationen durch die Studierenden und anschließende Diskussionen |
| Leistungsnachweise und Prüfung: | Teilnahmeypflicht, benotete Präsentationen. |

Qualifikationsziele und Inhalte:

Qualifikationsziele:
Die Studierenden sind in der Lage eine komplexes fachliches Thema aus der Literatur selbstständig zu erarbeiten. Sie können das Thema in einem fachlichen Vortrag unter Zuhilfenahme moderner Medien präsentieren und mit einem technisch versierten Publikum eine Diskussion über die Präsentationsinhalte führen.

Lehrinhalte:
aktuelle Themen der Automobilinformatik

Literatur:
aktuelle Themen der Automobilinformatik
Bachelor-Arbeit

Modulhandbuch: Bachelor-Studiengang Automobilinformatik (B.Sc.)

Bachelor-Arbeit AIF790

Modulverantwortlicher: Prof. Dr. Martin Pellkofer

Dozent: Dozenten der Hochschule Landshut. Mindestens einer der Prüfer ist ein hauptamtlicher Professor der Fakultät Informatik

Studiengang: Bachelor

Modultyp: Pflichtfach

Sprache: Deutsch oder Englisch

Dauer: siehe Angebot

Vorkenntnisse: -

Voraussetzungen: Erfolgreiche Ableistung der praktischen Zeit im Betrieb (Modul AIF590).

Leistungspunkte: 12

Arbeitsaufwand: 360 Stunden selbständige Arbeit

Lehrformen: Selbstständiges Arbeiten

Leistungsnachweise und Prüfung: Schriftliche Bachelor-Arbeit, Kolloquium.

Qualifikationsziele und Inhalte:

Qualifikationsziele:
Die Studierenden können ein etwas größeres, aber zeitlich klar begrenztes, praxisbezogenes Automobilinformatik-Thema eigenständig und wissenschaftlich bearbeiten. Sie sind in der Lage, Problemstellungen und deren Lösungen schriftlich darzustellen und mündlich zu präsentieren.

Lehrinhalte:
Abhängig vom Thema der Arbeit

Literatur:
Abhängig vom Thema der Arbeit
Module aus dem Bachelor-Studiengang Automobilwirtschaft und -technik

Untenstehende Tabelle fasst die aus dem Bachelor-Studiengang „Automobilwirtschaft und -technik“ stammenden Module des Studiengangs Automobilinformatik (Importmodule) zusammen. Im anschließenden Anhang des Modulhandbuchs befinden sich als Abdruck die Modulhandbuchblätter dieser Importmodule.

<table>
<thead>
<tr>
<th>Module des Studiengangs Automobilinformatik</th>
<th>Importstudiengang</th>
<th>Fakultät der Hochschule Landshut</th>
<th>Modulenummer</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIF120 Ingenieurmathematik I</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T110</td>
</tr>
<tr>
<td>AIF140 Grundlagen der Elektrotechnik</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T120</td>
</tr>
<tr>
<td>AIF150 Technische Mechanik</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T140</td>
</tr>
<tr>
<td>AIF220 Ingenieurmathematik II</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T210¹</td>
</tr>
<tr>
<td>AIF240 Elektronik und Messtechnik</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T220</td>
</tr>
<tr>
<td>AIF241 Angewandte Physik</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T240</td>
</tr>
<tr>
<td>AIF340 Regelungstechnik</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T320</td>
</tr>
<tr>
<td>AIF350 Konstruktion und Entwicklung</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T311²</td>
</tr>
<tr>
<td>AIF450 Grundlagen der Automobiltechnik</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T410</td>
</tr>
<tr>
<td>AIF650 Fahrwerktechnik</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T610³</td>
</tr>
<tr>
<td>AIF651 Antriebstechnik</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T620⁴</td>
</tr>
<tr>
<td>AIF750 Karosserietechnik</td>
<td>Bachelor „Automobilwirtschaft und -technik“</td>
<td>Elektrotechnik und Wirtschaftsingenieurwesen</td>
<td>T640⁵</td>
</tr>
</tbody>
</table>

¹ohne Teilnahme am Vorlesungsteil „Statistik“
²ohne Teilnahme am Praktikum
³Name des Moduls: Automobiltechnik I: Fahrwerk
⁴Name des Moduls: Automobiltechnik II: Antriebskonzepte
⁵Name des Moduls: Automobiltechnik IV: Karosserietechnik
A. Auszug aus dem Modulhandbuch des Studiengangs „Automobilwirtschaft und -technik“

2. Modulbeschreibungen

2.1 Pflichtmodule im 1. und 2. Semester

T110 – Ingenieurmathematik I

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Ingenieurmathematik I</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Mathematics for Engineers I</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Thomas Faldum</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>1. Studienjahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modultyp</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulgruppe</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Automobilinformatik: 7 ECTS)</td>
<td></td>
</tr>
<tr>
<td>Arbeitsaufwand (Stunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td>180</td>
<td>90</td>
</tr>
<tr>
<td>Lehrformen (Semesterwochenstunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

Modulspezifische Voraussetzungen lt. SPO	-
Empfohlene Voraussetzungen	Bearbeitung der Übungsaufgaben
Prüfung	schriftliche Prüfung – 90 Minuten
Zulassungsvoraussetzung zur Prüfung	siehe semesteraktueller Studien- und Prüfungsplan
Bewertung der Prüfungsleistung	endnotenbildend
Anteil am Prüfungsgesamtergebnis	0/120
(Automobilinformatik: 7/182)	

Modulziele/Angestrebte Lernergebnisse

Kenntnisse:
- Gründliche Kenntnisse der für die Automobilwirtschaft und -technik relevanten mathematischen Begriffe, Gesetze und Rechenmethoden

Fertigkeiten und Kompetenzen:
- Fähigkeit, diese Kenntnisse auf Aufgaben in unterschiedlichen Berufsfeldern für Absolventen der Automobilwirtschaft und -technik sicher anzuwenden
- Schulung in praxisorientierten mathematischen Denkweisen und Entwicklung der Abstraktionsfähigkeit

Inhalte

- Allgemeine Grundlagen (Gleichungen, Ungleichungen, Gleichungssysteme, Vektorrechnung)
- Funktionen und Kurven (Allgemeine Funktionseigenschaften, Koordinatentransformationen, Ganzrationale Funktionen, Gebrochenrationale Funktionen, Algebraische Funktionen, Trigonometrische Funktionen, Arkkusfunktionen, Exponentialfunktionen, Logarithmusfunktionen, Hyperbelfunktionen)
- Komplexe Zahlen (Definition und Darstellung einer komplexen Zahl, komplexe Rechnung, Anwendungen der komplexen Rechnung)
- Differentialrechnung mit einer Variablen (Ableitung einer Funktion, Ableitungsgesetze, Anwendungen der Differentialrechnung)
- Taylor-Reihen

Medien

Tafel, Overheadprojektor, Tablet-PC, Taschenrechner
Literatur

<table>
<thead>
<tr>
<th>Literatur</th>
<th>Die jeweils aktuelle Auflage von:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>− Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Band 1, Vieweg + Teubner Verlag.</td>
</tr>
<tr>
<td></td>
<td>− Papula, Lothar: Mathematische Formelsammlung, Vieweg + Teubner Verlag.</td>
</tr>
</tbody>
</table>
T120 – Grundlagen der Elektrotechnik

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T120</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Grundlagen der Elektrotechnik</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Principles of Electrical Engineering</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Armin Englmaier</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>1. Studienjahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modultyp</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulgruppe</td>
<td>-</td>
</tr>
<tr>
<td>ECTS-Punkte</td>
<td>5</td>
</tr>
<tr>
<td>Arbeitsaufwand (Stunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td></td>
<td>150</td>
</tr>
<tr>
<td>Lehrformen (Semesterwochenstunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

Modulspezifische Voraussetzungen lt. SPO	-
Empfohlene Voraussetzungen	Mathematische und physikalische Grundkenntnisse
Prüfung	schriftliche Prüfung – 90 Minuten
Zulassungsvoraussetzung zur Prüfung	siehe semesteraktueller Studien- und Prüfungsplan (Automobilinformatik: keine)
Bewertung der Prüfungsleistung	endnotenbildend
Anteil am Prüfungsgesamtergebnis	0/120 (Automobilinformatik: 5/182)

<table>
<thead>
<tr>
<th>Modulziele/Angestrebte Lernergebnisse</th>
<th>Kenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Überblick über die wichtigen Themenfelder der Elektrotechnik</td>
<td></td>
</tr>
<tr>
<td>- Kenntnis der wichtigen Begriffe und Größen der Elektrotechnik aus den folgenden vier Teilgebieten: Gleichstromnetze, elektrische Felder, magnetische Felder, Wechselstromnetze</td>
<td></td>
</tr>
<tr>
<td>- Kenntnis der wichtigen Formeln, welche die elektrotechnischen Größen zueinander in Beziehung setzt (z. B. Ohmsches Gesetz).</td>
<td></td>
</tr>
<tr>
<td>Fertigkeiten:</td>
<td></td>
</tr>
<tr>
<td>- Fertigkeit, grundlegende elektrotechnische Sachverhalte zu analysieren und sie mit Hilfe entsprechender Formeln quantitativ auszudrücken</td>
<td></td>
</tr>
<tr>
<td>- Fähigkeit, die Rechenergebnisse mit Hilfe qualitativer Abschätzung zu plausibilisieren</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td></td>
</tr>
<tr>
<td>- Vertieftes Verständnis der elektrotechnischen Gesetzmäßigkeiten</td>
<td></td>
</tr>
<tr>
<td>- Möglichkeit der kritischen Beurteilung von Aussagen zu elektrotechnischen Sachverhalten</td>
<td></td>
</tr>
<tr>
<td>- Möglichkeit der Weiterbildung und Vertiefung in der Berufspraxis anhand selbstgewählter Literatur</td>
<td></td>
</tr>
</tbody>
</table>
- Elektrisches Feld: Ladung, elektrische Feldstärke, elektrische Energie, elektrisches Potential, Coulomb'sche Gesetz, elektrische Flussdichte, Permittivität, Kapazität.
- Ausgleichsvorgänge im RC- und RL-Kreis.

Medien
- Tablet-PC/Beamer, Tafel, Overheadprojektor

Literatur
- Die jeweils aktuelle Auflage von:
 - Büttner, Wolf-Ewald: Grundlagen der Elektrotechnik Band 1 und 2, Oldenbourg Verlag.
 - Hagmann, Gert: Grundlagen der Elektrotechnik, Aula Verlag.
 - Nerreter, Wolfgang: Grundlagen der Elektrotechnik, Hanser Verlag.
T140 – Technische Mechanik

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T140</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Technische Mechanik</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Engineering Mechanics</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Andreas Dieterle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>1. Studienjahr (Grundlagenmodule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modultyp</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulgruppe</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand (Stunden)</th>
<th>Gesamt</th>
<th>Lehrveranstaltung</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>150</td>
<td>60</td>
<td>90</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>90</td>
<td>60</td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrformen (Semesterwochenstunden)</th>
<th>Gesamt</th>
<th>Seminarist. Unterricht</th>
<th>Übung</th>
<th>Praktikum</th>
<th>Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>90</td>
<td>60</td>
<td>150</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Modulspezifische Voraussetzungen lt. SPO	-
Empfohlene Voraussetzungen	-
Prüfung	schriftliche Prüfung – 90 Minuten
Zulassungsvoraussetzung zur Prüfung	siehe semesteraktueller Studien- und Prüfungsplan (Automobilinformatik: keine)
Bewertung der Prüfungslistung	endnotenbildend
Anteil am Prüfungsgesamtergebnis	0/120 (Automobilinformatik: 5/182)

<table>
<thead>
<tr>
<th>Modulziele/Angestrebte Lernergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse:</td>
</tr>
<tr>
<td>- Teilgebiete und Grundgrößen der technischen Mechanik, insbesondere am Starrkörper</td>
</tr>
<tr>
<td>- Definitionen von Bauteilen, Lagern und Fachwerken</td>
</tr>
<tr>
<td>- Grundbegriffe der Festigkeitsrechnung und der Festigkeitshypothesen</td>
</tr>
<tr>
<td>- Kinematische und kinetische Grundgrößen</td>
</tr>
<tr>
<td>Fertigkeiten:</td>
</tr>
<tr>
<td>- Arbeiten mit Formelsammlungen und Tabellen</td>
</tr>
<tr>
<td>Kompetenzen:</td>
</tr>
<tr>
<td>- Fähigkeit, einfache mechanische Systeme zu analysieren, Modelle zu bilden und auf die zu lösende Aufgabe zugeschnittene Freikörperbilder zu erstellen</td>
</tr>
<tr>
<td>- Fähigkeit zur Analyse von Systemen im Gleichgewicht und zur Lösung einfacher, überwiegend zweidimensionaler Aufgaben aus den Bereichen Stereo- und Elastostatik inklusive Festigkeitslehre</td>
</tr>
<tr>
<td>- Fähigkeit zur Beschreibung der Bewegung von Punkten und Starrkörperrn in kartesischen Koordinaten und Polarkoordinaten</td>
</tr>
<tr>
<td>- Fähigkeit zum Aufstellen und Lösen der kinetischen Gleichungen von Punktmassensystemen und einfachen Starrkörpersystemen</td>
</tr>
<tr>
<td>- Berücksichtigung von geometrischen Beziehungen und Ermittlung von relevanten Grundgrößen wie z. B. Schwerpunkt und Trägheiten in allen der obengenannten Fälle</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwerpunkte, jeweils zu gleichen Teilen relevant: Grundlagen:</td>
</tr>
<tr>
<td>- Definition und Eigenschaften von Kräften und Momenten</td>
</tr>
<tr>
<td>- Äquivalenz und Gleichgewicht in verschiedenen Kraftsystemen</td>
</tr>
</tbody>
</table>
Elastostatik:
- Ermittlung der Spannungen und Festigkeitsnachweis bei Zug, Druck, Biegung und Torsion am Balken
- Überprüfen von Balken auf Knickung
- Festigkeitshypothesen und deren Anwendung
- Festigkeitsnachweis bei zusammengesetzter Belastung im ebenen Spannungsfall

Kinematik und Kinetik des Massepunktes und starrer Körper:
- Grundgrößen der Kinematik: Weg, Geschwindigkeit, Beschleunigung, Winkel, Winkelgeschwindigkeit und -beschleunigung
- Beschreibung von Bewegungen in kartesischen Koordinaten und in Polarkoordinaten, Grundformel der Kinematik
- Bestimmung von Schwerpunkt und Massenträgheitsmoment von einfachen Starrkörpern
- Die Newtonschen Gesetze und das Prinzip von d'Alembert
- Rollen und Gleiten am Rad
- Einfluss von Reibung auf das Bewegungsverhalten am bewegten Starrkörper (insbesondere am Rad)

In allen Fällen gilt die Beschränkung auf Ebene Systeme soweit mit dem Thema vereinbar.

Medien
- PC/Beamer, Tafel, Auflichtprojektor

Literatur
- Die jeweils aktuelle Auflage von:
T210 – Ingenieurmathematik II

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T210</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Ingenieurmathematik II</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Mathematics for Engineers II</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Thomas Faldum</td>
</tr>
</tbody>
</table>

Studienabschnitt
1. Studienjahr

Modultyp
Pflichtmodul

Modulgruppe
-

ECTS-Punkte
10

Arbeitsaufwand (Stunden) (Automobilinformatik: 7 ECTS)

<table>
<thead>
<tr>
<th>Gesamt</th>
<th>Lehrveranstaltung</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>120</td>
<td>180</td>
</tr>
</tbody>
</table>

Lehrformen (Semesterwochenstunden) (Automobilinformatik: ohne Teilnahme am Vorlesungsteil „Statistik“)

<table>
<thead>
<tr>
<th>Gesamt</th>
<th>Seminarist. Unterricht</th>
<th>Übung</th>
<th>Praktikum</th>
<th>Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Modulspezifische Voraussetzungen lt. SPO
-

Empfohlene Voraussetzungen
Ingenieurmathematik I (T110)

Prüfung
Schriftliche Prüfung – 90 Minuten

Zulassungsvoraussetzung zur Prüfung
siehe semesteraktueller Studien- und Prüfungsplan

Bewertung der Prüfungsleistung
denotenbildend

<table>
<thead>
<tr>
<th>Anteil am Prüfungsgesamtergebnis</th>
<th>0/120</th>
</tr>
</thead>
</table>

Modulziele/Angestrebte Lernergebnisse
Kenntnisse
- Gründliche Kenntnisse der für die Automobilwirtschaft und -technik relevanten mathematischen Begriffe, Gesetze und Rechenmethoden

Fertigkeiten und Kompetenzen
- Fähigkeit, diese Kenntnisse auf Aufgaben in unterschiedlichen Berufsfeldern für Absolventen der Automobilwirtschaft und -technik sicher anzuwenden
- Schulung in praxisorientierten mathematischen Denkweisen und Entwicklung der Abstraktionsfähigkeit

Inhalte
Analysis und lineare Algebra
- Integralrechnung mit einer Variablen (Integration als Umkehrung der Differentiation, bestimmtes Integral als Flächeninhalt, Fundamentalsatz der Differential- und Integralrechnung, Grundintegrale, elementare Integrationsregeln, analytische Integrationsmethoden, numerische Integrationsverfahren, uneigentliche Integrale, Anwendungen der Integralrechnung)
- Fourier-Reihen (Harmonische Analyse)
- Lineare Algebra (reelle Matrizen, lineare Gleichungssysteme, Determinanten, quadratische lineare Gleichungssysteme, Eigenwerte und Eigenvektoren einer Matrix)
- Differential- und Integralrechnung für Funktionen mit mehreren Variablen (Funktionen mit mehreren Variablen und ihre Darstellung, partielle Differentiation, relative Extrema, lineare Ausgleichsrechnung, Mehrfachintegrale)
- Gewöhnliche Differentialgleichungen (DGL 1. Ordnung, Lineare DGL 2. Ordnung mit konstanten Koeffizienten, Numerische Lösung von DGL)
<table>
<thead>
<tr>
<th>Statistik</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Beschreibende Statistik (Häufigkeitsverteilung, Kennwerte einer Stichprobe, markante Grafiken), Korrelation</td>
</tr>
<tr>
<td>- Wahrscheinlichkeitsrechnung (Wahrscheinlichkeitsbegriff, Zufallsvariablen, Rechenregeln)</td>
</tr>
<tr>
<td>- Wahrscheinlichkeitsverteilungen (Kennwerte, wichtige diskrete und stetige Verteilungen, zentraler Grenzwertsatz)</td>
</tr>
<tr>
<td>- Schließende Statistik, Statistische Prüfverfahren (Schätzungen von Parametern, Konfidenzintervalle, statistische Hypothesen, Hypothesentests)</td>
</tr>
<tr>
<td>- Regression</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medien</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tablet-PC, Taschenrechner, Kamera, Tafel/Whiteboard, Overheadprojektor</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Literatur</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die jeweils aktuelle Auflage von:</td>
</tr>
<tr>
<td>- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Band 1, Vieweg + Teubner Verlag.</td>
</tr>
<tr>
<td>- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Band 2, Vieweg + Teubner Verlag.</td>
</tr>
<tr>
<td>- Papula, Lothar: Mathematik für Ingenieure und Naturwissenschaftler, Band 3, Vieweg + Teubner Verlag.</td>
</tr>
<tr>
<td>- Papula, Lothar: Mathematische Formelsammlung für Ingenieure und Naturwissenschaftler, Vieweg + Teubner Verlag.</td>
</tr>
</tbody>
</table>
T220 – Elektronik und Messtechnik

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T220</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Elektronik und Messtechnik</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Electronics and Measurement Engineering</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Jürgen Giersch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>1. Studienjahr (Grundlagenmodule)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modultyp</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulgruppe</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand (Stunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td></td>
<td>210</td>
</tr>
<tr>
<td>Lehrformen (Semesterwochenstunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Modulspezifische Voraussetzungen lt. SPO

<table>
<thead>
<tr>
<th>Empfohlene Voraussetzungen</th>
<th>Erfolgreicher Abschluss der Module „Grundlagen der Elektrotechnik (T120)“, „Informatik I (T131)“</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfung</td>
<td>schriftliche Prüfung – 90 Minuten</td>
</tr>
<tr>
<td>Zulassungsvoraussetzung zur Prüfung</td>
<td>siehe semesteraktueller Studien- und Prüfungsplan</td>
</tr>
<tr>
<td>Bewertung der Prüfungsleistung</td>
<td>Endnotenbildend</td>
</tr>
<tr>
<td>Anteil am Prüfungsgesamtergebnis</td>
<td>0/120 (Automobilinformatik: keine)</td>
</tr>
</tbody>
</table>

Modulziele/Angestrebte Lernergebnisse

| Kenntnisse: |
| - Beschreibung der Herstellung elektronischer Geräte |
| - Beschreibung elektrischer Bauelemente durch Kennlinien |
| - Kennen wichtiger Schaltsymbole |
| - Kennen wichtiger Grenzwerte |
| - Beschreibung der elektrischen Funktion wichtiger Halbleiterbauelemente |
| - Erklären einiger Grundschaltungen der Elektronik (Gleichrichter, Glättung, MOSFET als Schalter/Verstärker, OPV-Grundschaltungen) |
| - Beschreibung der Wandlung zwischen analogen und digitalen Signalen |
| - Kennen der Grundlagen und einfache Schaltungen der Digitaltechnik |

| Fertigkeiten: |
| - Anwendung der Kenntnisse und Gesetzmäßigkeiten über Grenzwerte auf Bauteilauswahl |
| - Analysieren und Zeichnen einfacher Schaltungen |
| - Umgang mit Formeln, Berechnungsmethoden und Datenblättern aus der Ingenieurpraxis |
| - Anwendung graphischer Lösungsverfahren auf Basis von Kennlinien |
| - Bewerten einer Digitalisierung hinsichtlich Dynamik und Abtastfrequenz |
| - Optimieren von Logikschaltungen hinsichtlich der Gatterzahl |

Kompetenzen:
Die Studierenden sind vertraut mit den Konzepten der Elektronik und Messtechnik und können diese in der späteren Ingenieurpraxis in ihrem Berufsfeld eigenverantwortlich einschätzen.
<table>
<thead>
<tr>
<th>Inhalte</th>
<th>Herstellung elektronischer Schaltungen (Entwicklungsprozess, Elektronik Design Automation, Leiterplattenfertigung, Verbindungstechnologien, Lötvorfahren, Fehlerwahrscheinlichkeiten)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grenzwerte (Safe-Operating-Area, Thermischer Widerstand, Umgang mit Datenblättern, Dimensionierung von Kühlerkörpem)</td>
</tr>
<tr>
<td></td>
<td>Diode und Ihre Anwendungen (Shockley-Gleichung, Kennlinie, Grenzwerte, Datenblätter, Bauformen, Einweggleichrichter, Brückengleichrichter, Glättungskondensator, Leuchtdiode, Fotodiode, Solarzelle)</td>
</tr>
<tr>
<td></td>
<td>MOSFET (Funktionsweise, Kennlinie, Grenzwerte, Datenblätter, Bauformen, MOSFET als Schalter ohmscher und induktiver Lasten, MOSFET als Verstärker)</td>
</tr>
<tr>
<td></td>
<td>Operationsverstärker (Funktionsweise idealer/realer OPV, Prinzip der Gegenkopplung, nicht-invertierender/invertierender Verstärker, Summierer, Integrator, Differenzierer. Grenzfrequenz, Slew-Rate)</td>
</tr>
<tr>
<td></td>
<td>Analog-Digital-Umsetzer/Digital-Analog-Umsetzer (Funktionsweise, Quantisierungsfehler, Abtasttheorem)</td>
</tr>
<tr>
<td></td>
<td>Digitaltechnik (Logikgatter, CMOS-Technologie, Schaltnetze, Schaltwerke)</td>
</tr>
<tr>
<td>Laborinhalte:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>− Versuch 1: Gleichstromschaltungen</td>
</tr>
<tr>
<td></td>
<td>o Einstellungen eines Netzgeräts (Spannung, Strombegrenzung)</td>
</tr>
<tr>
<td></td>
<td>o Messen mit dem Multimeter</td>
</tr>
<tr>
<td></td>
<td>o Bipolare Spannungsversorgung mit dem Labornetzgerät</td>
</tr>
<tr>
<td></td>
<td>o Spannungsteiler (unbelastet und belastet)</td>
</tr>
<tr>
<td></td>
<td>o Innenwiderstand einer Spannungsquelle</td>
</tr>
<tr>
<td></td>
<td>o Aufzeichnung einer Diodenkennlinie mit dem Multimeter</td>
</tr>
<tr>
<td></td>
<td>o Kapazitätsbestimmung</td>
</tr>
<tr>
<td></td>
<td>− Versuch 2: Messungen mit dem Digitaloszilloskop:</td>
</tr>
<tr>
<td></td>
<td>o Tastkopfabgleich</td>
</tr>
<tr>
<td></td>
<td>o DC/AC/GND-Kopplung des Oszilloskops („Signalverfälschung“)</td>
</tr>
<tr>
<td></td>
<td>o Bestimmung einer Diodenkennlinie im x-y-Betrieb</td>
</tr>
<tr>
<td></td>
<td>o Aufnahme eines einmaligen Ereignisses (Prellen eines Schalters, Ermittlung der Speichertiefe)</td>
</tr>
<tr>
<td></td>
<td>− Versuch 3: Wechselstromschaltungen</td>
</tr>
<tr>
<td></td>
<td>o Betrachtung von R, L und C an Wechselspannung</td>
</tr>
<tr>
<td></td>
<td>o Frequenzabhängiger Spannungsteiler (RC-Tiefpass)</td>
</tr>
<tr>
<td></td>
<td>o Schaltvorgänge unter dem Einfluss einer Kapazität</td>
</tr>
<tr>
<td></td>
<td>o Frequenzabhängiger Spannungsteiler (RLC-Tiefpass)</td>
</tr>
<tr>
<td></td>
<td>o Bode-Diagramm</td>
</tr>
<tr>
<td></td>
<td>− Versuch 4: Diodenschaltungen</td>
</tr>
<tr>
<td></td>
<td>o Einweggleichrichter</td>
</tr>
<tr>
<td></td>
<td>o Schaltverhalten einer Diode</td>
</tr>
<tr>
<td></td>
<td>o Glättung durch Kondensator</td>
</tr>
<tr>
<td></td>
<td>o Brückengleichrichter</td>
</tr>
<tr>
<td></td>
<td>o Leuchtdiode</td>
</tr>
<tr>
<td></td>
<td>o Fotodiode</td>
</tr>
<tr>
<td></td>
<td>− Versuch 5: Logikschaltungen</td>
</tr>
<tr>
<td></td>
<td>o 3-Bit-Register</td>
</tr>
<tr>
<td></td>
<td>o 4-Bit-Schieberegister</td>
</tr>
<tr>
<td></td>
<td>o Ampelsteuerung</td>
</tr>
<tr>
<td></td>
<td>o 4-Bit-Vorwärts-/Rückwärtszähler</td>
</tr>
<tr>
<td>Medien</td>
<td>Visualizer, Anschauungsmuster, experimentelle Vorführungen, Simulationen, Videos, Übungsaufgaben, Hausaufgaben</td>
</tr>
<tr>
<td>Literatur</td>
<td>Umfangreiches Vorlesungsskript der Hochschule Landshut, ausgewählte Datenblätter (beides wird über Moodle zur Verfügung gestellt)</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>T240</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Angewandte Physik</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Applied Physics</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Artem Ivanov</td>
</tr>
</tbody>
</table>

Studienabschnitt	1. Studienjahr (Grundlagenmodule)
Modultyp	Pflichtmodul
Modulgruppe	-

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand (Stunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td></td>
<td>210</td>
</tr>
<tr>
<td>Lehrformen (Semesterwochenstunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

| Modulspezifische Voraussetzungen lt. SPO | - |
| Empfohlene Voraussetzungen | - |

Prüfung	schriftliche Prüfung – 90 Minuten
Zulassungsvoraussetzung zur Prüfung	siehe semesteraktueller Studien- und Prüfungsplan (Automobilinformatik: keine)
Bewertung der Prüfungsleistung	endnotenbildend
Anteil am Prüfungsgesamtergebnis	0/120 (Automobilinformatik: 7/182)

<table>
<thead>
<tr>
<th>Modulziele/Angestrebte Lernergebnisse</th>
<th>Kenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verständnis von physikalischen Grundlagen der mechanischen, thermodynamischen, optischen und elektrischen Erscheinungen</td>
<td></td>
</tr>
<tr>
<td>Kenntnisse in der Anwendung von physikalischen Gesetzen bei der Lösung realer Aufgabenstellungen.</td>
<td></td>
</tr>
</tbody>
</table>

| Fertigkeiten und Kompetenzen: |
| Die Studierenden sind fähig, die physikalischen Grundlagen der technischen Anwendungen richtig zu identifizieren und einzuordnen. |
| Sie sind in der Lage, Zusammenhänge zwischen unterschiedlichen physikalischen Aspekten technischer Anwendungen zu verstehen. |
| Sie haben die Fähigkeit, physikalische Formeln zu analysieren und zu visualisieren. |
| Die Studierenden besitzen Fertigkeiten in der Durchführung einfacher physikalischer Berechnungen. |

<table>
<thead>
<tr>
<th>Inhalte</th>
<th>- Physik in bewegten Bezugssystemen: Trägheitskräfte, Zentrifugalkraft, Corioliskraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erhaltungssätze der Physik: mechanische Arbeit, Energieformen, Energieerhaltung, Impulserhaltung, elastische und inelastische Stöße, Drehimpulserhaltung, Ladungserhaltung, Masseerhaltung</td>
<td></td>
</tr>
<tr>
<td>Flüssigkeiten, hydrostatischer und dynamischer Druck, Oberflächenspannung, Kapillareffekt, Gase, Atmosphäre, ideales Gas</td>
<td></td>
</tr>
<tr>
<td>− Thermodynamik: Temperatur, Temperaturskalen, kinetische Gastheorie, Zustandsgleichung, Hauptsätze der Thermodynamik, thermodynamische Prozesse, Wärmekapazität, Kreisprozesse, Wärmemaschinen</td>
<td></td>
</tr>
<tr>
<td>− Schwingungen und Wellen: eindimensionale harmonische Schwingung, gedämpfte und erzwungene Schwingungen, Wellengleichung, harmonische Wellen, Reflexion, stehende Wellen, Schallwellen, Schallwahrnehmung, Schallpegel, Doppler-Effekt, Interferenz und Beugung</td>
<td></td>
</tr>
<tr>
<td>Übungen: ca. 30 Aufgaben mit Lösungen und Diskussion während Übungsstunden.</td>
<td></td>
</tr>
<tr>
<td>Medien</td>
<td>Tablet-PC und Beamer, Computersimulationen, Demonstrationsexperimente</td>
</tr>
<tr>
<td>Literatur</td>
<td>Die jeweils aktuelle Auflage von:</td>
</tr>
</tbody>
</table>
T320 – Regelungstechnik

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T320</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Automatic Control Engineering</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Martin Soika</td>
</tr>
<tr>
<td>Studienabschnitt</td>
<td>2. Studienjahr (Aufbaumodule)</td>
</tr>
<tr>
<td>Modultyp</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulgruppe</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand (Stunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
</tr>
<tr>
<td>Lehrformen (Semesterwochenstunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Die Teilnahme am Praktikum „Regelungstechnik“ setzt die Teilnahme an der Prüfung „Elektronik und Messtechnik“ (T220) voraus.

Empfohlene Voraussetzungen:
Erfolgreicher Abschluss des Moduls „Grundlagen der Elektrotechnik“ (T120)

Prüfung:
schriftliche Prüfung – 90 Minuten

Zulassungsvoraussetzung zur Prüfung:
siehe semesteraktueller Studien- und Prüfungsplan (Automobilinformatik: keine)

Bewertung der Prüfungsleistung:
endnotenbildend

Anteil am Prüfungsgesamtergebnis:
5/120 (Automobilinformatik: 5/182)

Modulziele/Angestrebte Lernergebnisse
In der Lehrveranstaltung sollen Studierende Kompetenzen zur Analyse und zum Entwurf einfacher Regelkreise erwerben.
Hierfür werden zunächst folgende Kenntnisse vermittelt:
- Beschreibung technischer Prozesse durch Übertragungsglieder
- Aufbau, Wirkungsweise und mathematische Beschreibung von Regelkreisen
- Auswahl und Parametrierung einfacher Regler

Auf Basis dieser Kenntnisse erwerben die Studierenden Fertigkeiten
- zum Verständnis von Gemeinsamkeiten dynamischer Prozesse unterschiedlicher technischer Domänen
- zur Analyse und Beschreibung von Regelstrecken in Zeit- und Frequenzbereich
- zur Verknüpfung von Regelkreisgliedern zu komplexeren Regelstrecken und dem geschlossenen Regelkreis mit Strecke und Regler.
- zur Darstellung und Analyse des Frequenzverhaltens
- zur Bestimmung und Bewertung des Führungs- und Störverhaltens
- zur Untersuchung der Stabilität von einfachen Regelkreisen.
- zur Entwurf von PID-Reglern (Struktur und Parametrierung) gemäß gestelltem Anforderungskatalog

Inhalte
Zum Erreichen der Modulziele werden folgende Inhalte gelehrt:
- Einführung in die Regelungstechnik
- Grundlegender Aufbau von Regelkreisen
- Mathematische Beschreibung von Regelkreisgliedern
- Übertragungsverhalten technischer Regelstrecken
- Verknüpfung von Regelkreisgliedern

Anhang: Auszug aus dem Modulhandbuch des Bachelor-Studiengangs Automobilinformatik (B.Sc.)
<table>
<thead>
<tr>
<th>Modulhandbuch für den Bachelorstudiengang Automobilwirtschaft und -technik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fakultät Elektrotechnik und Wirtschaftsingenieurwesen</td>
</tr>
</tbody>
</table>

- Einschleifiger Regelkreis Stabilitätsbetrachtungen
- Grundlagen des Führungs- und Störverhaltens
- Übersicht gängiger Regler
- Anforderungen an die Regelung und deren Folgen für die Reglerstruktur
- Reglerparametrierung mittels Einstellregeln

<table>
<thead>
<tr>
<th>Medien</th>
<th>Tablet-PC mit Beamer, Tafel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literatur</td>
<td>Die jeweils aktuelle Auflage von:</td>
</tr>
<tr>
<td></td>
<td>- Föllinger, Otto: Regelungstechnik, Hüthig.</td>
</tr>
<tr>
<td></td>
<td>- Schulz, Gerd: Regelungstechnik 1, Oldenbourg.</td>
</tr>
<tr>
<td></td>
<td>- Zacher, Serge / Reuter, Manfred: Regelungstechnik für Ingenieure, Vie-weg + Teubner.</td>
</tr>
</tbody>
</table>
2.2 Pflichtmodule im 3. und 4. Semester

T311 – Konstruktion und Entwicklung

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T311</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Konstruktion und Entwicklung</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Engineering and Design</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Raimund Kreis</td>
</tr>
</tbody>
</table>

Studienabschnitt: 2. Studienjahr
Modultyp: Pflichtmodul
Modulgruppe: -

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>7</th>
<th>(Automobilinformatik: 5 ECTS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand (Stunden)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gesamt</td>
<td>210</td>
<td>90</td>
</tr>
<tr>
<td>Lehrveranstaltung</td>
<td>Selbststudium</td>
<td></td>
</tr>
<tr>
<td>Seminarist. Unterricht</td>
<td>Übung</td>
<td>Praktikum</td>
</tr>
<tr>
<td>Gesamt</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Modulspezifische Voraussetzungen lt. SPO	-	
Empfohlene Voraussetzungen	Grundlagen der Produktionstechnik	
Prüfung	schriftliche Prüfung – 90 Minuten	
Zulassungsvoraussetzung zur Prüfung	siehe semesteraktueller Studien- und Prüfungsplan	
Bewertung der Prüfungsleistung	endnotenbildend	
Anteil am Prüfungsgesamtergebnis	7/120	(Automobilinformatik: 5/182)

Modulziele/Angestrebte Lernergebnisse

Kennenntnisse:
- Die Studierenden haben Kenntnisse
 - zum Erstellen und Verstehen technischer Zeichnungen,
 - über die Anwendungsmöglichkeiten von CAD-Systemen,
 - zum Gestalten von Bauteilen,
 - über wichtige Maschinenelemente, deren Funktion und Anwendung,
 - grundlegender Aufgaben, Methoden und Vorgehensweisen der Produktentwicklung.

Fertigkeiten und Kompetenzen:
- Die Studierenden sind in der Lage,
 - Bauteile/Baugruppen zu skizzieren und normgerecht in einer technischen Zeichnung darzustellen,
 - Bauteile/Baugruppen mit Hilfe eines 3D-CAD-Systems darzustellen und daraus Zeichnungen und Stücklisten abzuleiten,
 - Maschinenelemente nach Vorgaben auszuwählen und auszulegen,
 - Lösungen für praxisorientierte, konstruktive Aufgaben unter Beachtung der Regeln kraftflussgerechter, werkstoffgerechter, fertigungsgerechter und montagegerechter Gestaltung zu erarbeiten.

Inhalte

Unterricht und Übungen:
- Aufgaben der Konstruktion und Entwicklung sowie deren Einbindung in die Unternehmensprozesse und -organisation
- Technisches Zeichnen:
 - Normgerechte Darstellung, Bemaßung und Beschriftung; Maß-, Form-
Medien
- Computer/Beamer, Tafel, Overheadprojektor

Literatur
Die jeweils aktuelle Auflage von:
- Hoischen, H.: Technisches Zeichnen, Cornelsen.
- eigene Internetrecherche

CAD-Praktikum:
- Bedienung eines 3D-CAD-Programms
- Anwendung, Möglichkeiten und Grenzen von 3D-CAD-Programmen
- einfache Konstruktionsaufgaben: 3D-Modellieren von Einzelteilen, Ableiten einer 2D-Zeichnung, Konstruieren in der Baugruppe

Konstruktionsmethodik und Entwicklungsprozess:
- Methodische Vorgehensweisen: V-Modell, Simultaneous Engineering, VDI 2221; Werkzeuge zur zielgerichteten Lösungssuche: Anforderungsliste, Funktions-/Wirkstrukturen, Morphologischer Kasten

Gestalten:
- Lösungsfindung; Wirtschaftlichkeitsberechnung; Normreihen; kraftflussgerechte, werkstoffgerechte, fertigungsgerechte und montagegerechte Konstruktion; Einfluss von Oberflächen und Passungen

Maschinenelemente:
- Aufbau und Anwendungsrichtlinien ausgewählter Maschinenelemente: Wälzlager; Federn; Wellen/Achsen; Schrauben; Welle-Nabe-Verbindungen; Zahnradgetriebe

Anhang: Auszug aus dem Modulhandbuchs des Bachelor-Studiengangs Automobilinformatik (B.Sc.) Seite 48
T410 – Grundlagen der Automobiltechnik

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T410</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Grundlagen der Automobiltechnik</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Principles of the Automotive Technology</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Manfred Strohe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>2. Studienjahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modultyp</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulgruppe</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand (Stunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrformen (Semesterwochenstunden)</th>
<th>Gesamt</th>
<th>Seminarist. Unterricht</th>
<th>Übung</th>
<th>Praktikum</th>
<th>Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulspezifische Voraussetzungen lt. SPO</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>-</td>
</tr>
<tr>
<td>Prüfung</td>
<td>schriftliche Prüfung – 90 Minuten</td>
</tr>
<tr>
<td>Zulassungsvoraussetzung zur Prüfung</td>
<td>siehe semesteraktueller Studien- und Prüfungsplan</td>
</tr>
<tr>
<td>Bewertung der Prüfungsleistung</td>
<td>endnotenbildend</td>
</tr>
<tr>
<td>Anteil am Prüfungsgesamtergebnis</td>
<td>5/120 (Automobilinformatik: keine)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulziele/Angestrebte Lernergebnisse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angestrebte Lernergebnisse sind die Anwendung der in den Grundlagenmodulen erworbenen naturwissenschaftlichen Grundkenntnisse auf fahrzeugspezifische Fragestellungen zur qualitativen und quantitativen Bewertung elementarer Fragestellungen sowie die Erlangung eines grundlegenden Verständnisses über Aufbau, Funktion der obengenannten Baugruppen und die elementaren Wechselwirkungen zwischen den Fahrzeugkomponenten und dem Gesamtfahrzeug.</td>
</tr>
<tr>
<td>Angestrebte Lernergebnisse sind die Anwendung der in den Grundlagenmodulen erworbenen naturwissenschaftlichen Grundkenntnisse auf fahrzeugspezifische Fragestellungen zur qualitativen und quantitativen Bewertung elementarer Fragestellungen sowie die Erlangung eines grundlegenden Verständnisses über Aufbau, Funktion der obengenannten Baugruppen und die elementaren Wechselwirkungen zwischen den Fahrzeugkomponenten und dem Gesamtfahrzeug.</td>
</tr>
<tr>
<td>Kenntnisse (knowledge): Die Studierenden kennen die grundlegenden technischen Funktionen und den prinzipiellen Aufbau der o.g. Baugruppen und ihre Bedeutung und Platzierung im Rahmen des Gesamtfahrzeugentwicklungsprozesses. Sie sind in der Lage, quantitative Abschätzungen hinsichtlich einzelner Funktionalitäten auf Basis einfacher Modellvorstellungen durchzuführen.</td>
</tr>
<tr>
<td>Fertigkeiten (skills): Die Studierenden besitzen ein grundlegendes technisches Verständnis für die verschiedenen Baugruppen des Fahrzeuges. Sie sind in der Lage, nach entsprechender Einarbeitung eigenständige Lösungen einfacher technischer Aufgabenstellungen zu entwickeln.</td>
</tr>
<tr>
<td>Kompetenzen (competences): Die Studierenden sind in der Lage, neue Lösungsansätze aus den verschiedenen Bereichen technisch hinsichtlich Umsetzbarkeit, Wirksamkeit und Auswirkungen auf das Gesamtfahrzeug</td>
</tr>
</tbody>
</table>
groß zu bewerten. Sie können die Konsequenzen auf die Gesamtfahrzeugentwicklung grob abschätzen und besitzen damit eine wesentliche Grundvoraussetzung, die Tätigkeiten verschiedener Beteiligter im Rahmen der Fahrzeugentwicklung aufeinander abzustimmen und zu koordinieren.

Inhalte
- Einteilung der Straßenfahrzeuge nach DIN, wesentliche gesetzliche Randbedingungen
- Fahrwiderstände und Fahrleistungsberechnung
- Statische und dynamische Achslastverteilung
- Aufbau und Eigenschaften der verschiedenen Ein- und Zweiachsansichtsbegriffe
- Bauformen, Eigenschaften und Funktionen der einzelnen Antriebskomponenten
- Elementare physikalische Zusammenhänge und Vorgehensweise bei der Getriebeauslegung und Verbrauchsrechnung
- Aufbau und Funktion Bremsysteme und -komponenten
- Aufbau und Funktion unterschiedlicher Lenksysteme
- Aufbau und Funktion aktueller Regelsysteme

Praktikumsinhalte:
- Praktikum 1: Identifikation und Analyse unterschiedlicher Antriebslayouts und der Wechselwirkungen mit dem Gesamtfahrzeuglayout/Packagekonzept am Beispiel verschiedener PKW
- Praktikum 2: Identifikation der einzelnen Antriebs-, Bremsen- und Lenk- systemkomponenten im Gesamtfahrzeugumfeld am Beispiel unterschiedlicher PKW
- Praktikum 3: Analyse und Aufbau unterschiedlicher Koppelungskörper zwischen Verbrennungsmotor und Getriebe (Schwungräder, Kupplungen, Wandler) anhand unterschiedlicher Exponate.
- Praktikum 4: Getriebeanalyse: Bestimmung der wesentlichen Parameter für AT und MT anhand unterschiedlicher Exponate.
- Praktikum 5: Analyse und Aufbau der verschiedenen Komponenten von PKW-Bremsystemen anhand unterschiedlicher Exponate.
- Praktikum 6: Analyse Lenksysteme und weiterer kraftführender Komponenten (Gelenke, Differential, Verteilergetriebe, Wellen) anhand unterschiedlicher Exponate.

Medien
- Skript, Moodle, Tafel, Demonstrationsobjekte, Videos, aktuelle Publikationen

Literatur
- Die jeweils aktuelle Auflage von:
 - Bosch: Kfz-Technik Handbuch; Vieweg Verlag.
 - Braess H.H.; Handbuch Kraftfahrzeugtechnik; Vieweg Verlag.
 - Burckhardt, M.: Bremsanlagen; Vogel Verlag.
 - Mitschke, Wallentowitz: Dynamik von Kfz; Springer Verlag.
 - eigene themenspezifische Internetrecherchen der Studierenden.
2.4 Pflichtmodule im 6. und 7. Semester

T610 – Automobiltechnik I: Fahrwerk

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T610</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Automobiltechnik I: Fahrwerk</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Automotive Technology I: Chassis</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Christian Koletzko</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Vertiefungsstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modultyp</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulgruppe</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand (Stunden)</td>
<td>150 (Lehrveranstaltung) 60 (Selbststudium)</td>
</tr>
<tr>
<td>Gesamt</td>
<td>Leptonstunden</td>
</tr>
<tr>
<td>150</td>
<td>60</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrformen (Semesterwochenstunden)</th>
<th>Gesamt</th>
<th>Seminarist. Unterricht</th>
<th>Übung</th>
<th>Praktikum</th>
<th>Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulspezifische Voraussetzungen lt. SPO</th>
<th>Ableistung der Praktischen Zeit im Betrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Grundlagen der Physik, Technischen Mechanik, Konstruktion und Entwicklung, Grundlagen der Automobiltechnik, Studium der Fachliteratur zum Bereich „Fahrwerkstechnik“</td>
</tr>
<tr>
<td>Prüfung</td>
<td>schriftliche Prüfung – 90 Minuten</td>
</tr>
<tr>
<td>Zulassungsvoraussetzung zur Prüfung</td>
<td>siehe semesteraktueller Studien- und Prüfungsplan</td>
</tr>
<tr>
<td>Bewertung der Prüfungsleistung</td>
<td>endnotenbildend</td>
</tr>
<tr>
<td>Anteil am Prüfungsgesamtergebnis</td>
<td>5/120 (Automobilinformatik: keine)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulziele/Angestrebte Lernergebnisse</th>
<th>Kenntnisse:</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Grundlagen der PKW-Fahrwerktechnik in Theorie und Praxis</td>
<td></td>
</tr>
<tr>
<td>➢ Anwendung der theoretischen Zusammenhänge auf technische Fragestellungen zur Fahrzeugtechnik, hinsichtlich der Fahrwerktechnik von Personenkraftwagen</td>
<td></td>
</tr>
<tr>
<td>Kompetenzen:</td>
<td></td>
</tr>
<tr>
<td>➢ Die Studierenden sind in der Lage, die erworbenen Kenntnisse und Fertigkeiten im betrieblichen Alltag und an verantwortlicher Stelle anzuwenden.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Inhalte</th>
<th>Grundlagen zur Fahrwerktechnik (PKW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>➢ Reifen/Räder: Bezeichnungen, Arten, Aufbau, Besonderheiten Unwucht, Beschädigungen</td>
<td></td>
</tr>
<tr>
<td>➢ Aufbau, Zusammensetzung verschiedener Fahrwerke</td>
<td></td>
</tr>
<tr>
<td>➢ Starrachsen: Fünf-/Vier-/Drei-/Zwei-Lenker, Torsionskurbel-, Deichsel- und De-Dion-Achse</td>
<td></td>
</tr>
<tr>
<td>➢ Halbstarrachsen: Verbündenlenker, Koppellenker</td>
<td></td>
</tr>
<tr>
<td>➢ Einzelradaufhängungen: Doppel-Querlenker, Feder-/Dämpferbein, Längslenker, Schrägläker, HA-Mehrlenker u. a.</td>
<td></td>
</tr>
<tr>
<td>➢ Fahrwerksmechanik: Kräfte und Belastungen im Fahrwerk und in den Fahrwerkslenkern</td>
<td></td>
</tr>
<tr>
<td>Medien</td>
<td>Litetatur</td>
</tr>
<tr>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Bewertung von Radfahrwerken</td>
<td>–</td>
</tr>
</tbody>
</table>
T620 – Automobiltechnik II: Antriebskonzepte

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T620</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Automobiltechnik II: Antriebskonzepte</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Automotive Technology II: Drive Concepts</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Ralph Pütz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Vertiefungsstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modultyp</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulgruppe</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>5</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Arbeitsaufwand (Stunden)</th>
<th>Gesamt</th>
<th>Lehrveranstaltung</th>
<th>Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>150</td>
<td>60</td>
<td>90</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrformen (Semesterwochenstunden)</th>
<th>Gesamt</th>
<th>Seminarist. Unterricht</th>
<th>Übung</th>
<th>Praktikum</th>
<th>Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulspezifische Voraussetzungen lt. SPO</th>
<th>Ableistung der Praktischen Zeit im Betrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Grundlagen der Physik/Thermodynamik, Technischen Mechanik, Grundlagen der Automobiltechnik, Studium der Fachliteratur zu den Bereichen „Verbrennungsmotoren/Antriebskonzepte“</td>
</tr>
<tr>
<td>Prüfung</td>
<td>schriftliche Prüfung – 90 Minuten</td>
</tr>
<tr>
<td>Zulassungsvoraussetzung zur Prüfung</td>
<td>siehe semesteraktueller Studien- und Prüfungsplan</td>
</tr>
<tr>
<td>Bewertung der Prüfungsleistung</td>
<td>endnotenbildend</td>
</tr>
<tr>
<td>Anteil am Prüfungsgesamtergebnis</td>
<td>5/120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulziele/Angestrebte Lernergebnisse</th>
<th>Vertiefe Kenntnisse in der Terminologie der PKW-Antriebskonzepte bezüglich Verbrennungsmotoren, Auslegung von Antriebskonzepten, Getriebe, Achsgetriebe. Umsetzung der theoretischen Kennwerte in praxisbezogene Anwendungen</th>
</tr>
</thead>
</table>

| Inhalte | - Wirkungsweise und Aufbau von Verbrennungsmotoren
- Arbeitsprozessrechnung
- Auslegung und Dimensionierung von Getrieben/Achsgetrieben an Pkw
- Fahrleistungsschaubild/Zugkraftdiagramm von Pkw-Antrieben
- Kraftstoffverbrauch |

| Medien | - |

| Literatur | Die jeweils aktuelle Auflage von:
T640 – Automobiltechnik IV: Karosserietechnik

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>T640</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulbezeichnung lt. SPO bzw. SPP</td>
<td>Automobiltechnik IV: Karosserietechnik</td>
</tr>
<tr>
<td>Modulbezeichnung (englisch)</td>
<td>Automotive Technology IV: Car Body Technology</td>
</tr>
<tr>
<td>Sprache</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Dozent(in)</td>
<td>siehe semesteraktueller Vorlesungsplan</td>
</tr>
<tr>
<td>Modulverantwortliche/r</td>
<td>Prof. Dr. Manfred Strohe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studienabschnitt</th>
<th>Vertiefungsstudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modultyp</td>
<td>Pflichtmodul</td>
</tr>
<tr>
<td>Modulgruppe</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ECTS-Punkte</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arbeitsaufwand (Stunden)</td>
<td>Gesamt</td>
</tr>
<tr>
<td></td>
<td>150</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrenformen (Semesterwochenstunden)</th>
<th>Gesamt</th>
<th>Seminarist. Unterricht</th>
<th>Übung</th>
<th>Praktikum</th>
<th>Projektarbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>3</td>
<td>-</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulspezifische Voraussetzungen lt. SPO</th>
<th>Ableistung der Praktischen Zeit im Betrieb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empfohlene Voraussetzungen</td>
<td>Grundlagen der Physik, Technischen Mechanik, Konstruktion und Entwicklung, Werkstoffkunde, Grundlagen der Automobiltechnik, Studium der Fachliteratur, Internet-Recherchen zum Bereich "Karosserietechnik"</td>
</tr>
<tr>
<td>Prüfung</td>
<td>schriftliche Prüfung – 90 Minuten</td>
</tr>
<tr>
<td>Zulassungsvoraussetzung zur Prüfung</td>
<td>siehe semesteraktueller Studien- und Prüfungsplan</td>
</tr>
<tr>
<td>Bewertung der Prüfungsleistung</td>
<td>endnotenbildend</td>
</tr>
<tr>
<td>Anteil am Prüfungsgesamtergebnis</td>
<td>5/120</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modulziele/Angestrebte Lernergebnisse</th>
<th>Lernziel ist eine Vermittlung der wesentlichen relevanten technischen, naturwissenschaftlichen und prozessualen Zusammenhänge aus den verschiedenen Teilbereichen der Karosserietechnik und -fertigung, so dass die Studierenden sich ein gesamthaftes Bild über die Komplexität von Entwicklung und Fertigung sowie der relevanten Wechselwirkungen mit den wesentlichen Baugruppen und Funktionen des Gesamtfahrzeuges machen können.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angestrebte Lernergebnisse sind:</td>
<td>Erlangung eines grundlegendes Verständnis der Fahrzeugkomponente Karosserie, der bei der Entwicklung zu beachtenden Anforderungen und Funktionen, der elementaren Wechselwirkungen mit den anderen Fahrzeugkomponenten sowie idealerweise die Fähigkeit zur quantitativen Bewertung elementarer Zusammenhänge.</td>
</tr>
<tr>
<td>Kenntnisse (knowledge):</td>
<td>Die Studierenden kennen die grundlegenden Bauformen, Bauarten und Komponenten einer PKW-Karosserie sowie deren Funktionen, den Ablauf einer Karosserietechnik und -fertigung, so die Studierenden sich ein gesamthaftes Bild über die Komplexität von Entwicklung und Fertigung sowie der relevanten Wechselwirkungen mit den wesentlichen Baugruppen und Funktionen des Gesamtfahrzeuges machen können.</td>
</tr>
<tr>
<td>Fertigkeiten (skills):</td>
<td>Die Studierenden besitzen ein grundlegendes technisches Verständnis für die verschiedenen Themenbereiche der Karosserie, welche ihnen nach entsprechender Einarbeitung die eigenständige Lösung einfacher technischer Aufgabenstellungen aus den unterschiedlichen Bereichen der Karosserietechnik erlaubt.</td>
</tr>
<tr>
<td>Kompetenzen (competences):</td>
<td>Die Studierenden sind in der Lage, neue Lösungsansätze aus dem Bereich Karosserie hinsichtlich Umsetzbarkeit,</td>
</tr>
</tbody>
</table>
Wirksamkeit und prozessualen Konsequenzen zu bewerten. Sie besitzen aufgrund der gesamthaften Kenntnis die Grundvoraussetzung, die Tätigkeiten verschiedener Fachabteilungen für einzelne Karosserie-Subsysteme aufeinander abzustimmen und zu koordinieren.

<table>
<thead>
<tr>
<th>Inhalte</th>
</tr>
</thead>
<tbody>
<tr>
<td>− Definition Karosserie und Erarbeitung der elementaren Anforderungen aus Kunden-/Gesetzgeber-/Herstellerperspektive</td>
</tr>
<tr>
<td>− Charakterisierung wesentliche Karosseriebauform und -bauarten</td>
</tr>
<tr>
<td>− Grundlagen Karosseriepackage</td>
</tr>
<tr>
<td>− Einbindung der Karosserieentwicklung in den Fahrzeugentwicklungsprozess</td>
</tr>
<tr>
<td>− Grundlagen der Fahrerplatzgestaltung: Anthropometrie, Sitz-/Sicht-/Bedienkonzept</td>
</tr>
<tr>
<td>− Struktureller Karosserieaufbau: Wesentliche Komponenten und deren Funktionen</td>
</tr>
<tr>
<td>− Elementare Grundlagen Insassen- und Passantenschutz: Bewertungsverfahren; Crash: Belastungen und RK-seitige Kompensationsmaßnahmen, sicherheitsrelevante Innenraumumfänge; Passantenschutzmaßnahmen</td>
</tr>
<tr>
<td>− Grundlegende Mechanismen der Aerodynamik</td>
</tr>
<tr>
<td>− Wesentliche Schritte und Verfahren der Karosseriefertigung</td>
</tr>
</tbody>
</table>

Praktikumsinhalte:

− Praktikum 1: Charakteristische PKW – Kenngrößen
 Normgerechte Bestimmung der Außenabmessungen eines PKW sowie der Gesamtmasse und Achslastverteilung
− Praktikum 2: Innenraum – Sitzposition und Sichtfeld
 Bestimmung der charakteristischen Größen zur normgerechten Beschreibung der Sitzposition, Sichtfeldbestimmung
− Praktikum 3: Strukturanalyse Rohkarosserie
 Begriffsdefinition RK, Identifikation und Benennung Substrukturen, Identifikation crashrelevanter Strukturbereiche und Kraftleitpfade, Fertigungsverfahren, Materialien, Fügeverfahren
− Praktikum 4: experimentelle Ermittlung der statischen Torsionssteifigkeit einer RK
− Praktikum 5: experimentelle Ermittlung der statischen Biegesteifigkeit einer RK

Medien

Skript, Moodle, Tafel, Demonstrationsobjekte, Videos, aktuelle Publikationen

Literatur

Die jeweils aktuelle Auflage von:

− Bosch: Kfz-Technik Handbuch; Vieweg Verlag.
− Braess, H. H.: Handbuch Kraftfahrzeugtechnik; Vieweg Verlag.
− Pippert, H.: Karosserietechnik; Vogel Verlag.
− Eckstein, L.: Strukturentwurf von Kfz; fka Aachen.
eigene themenspezifische Internetrecherchen der Studierenden.